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FOREWORD

This program for the development of "High-Speed Micropower

Microelectronic Logic Circuits" was carried out by Texas

Instruments Incorporated in Dallas, Texas under Contract No.

NAS 1-7106 for NASA, Langley Research Center, Hampton, Virginia.

The work was done in the Semiconductor Research and

Development Laboratory, Molecular Electronics Programs Branch

(Dr. W. T. Matzen, Manager), and Micropower Section (Dr. D. J.

Manus, Section Head).

This report was written by R. Stehlin, Project Engineer, with

contributions by W. Cashion, Diffusion Engineer, and G. Threadgill,

Engineering Assistant.

The work reported here represents an advancement in the state

of the art in that complementary transistors in integrated-circuit

form have been developed and used in low-power, low-voltage,

high-speed logic circuits.
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ABSTRACT

e,

This is the final technical documentary report on High-Speed

Micropower Microelectronic Logic Circuits, Contract No.

NAS1-7106, prepared for the National Aeronautics and Space

Administration, Langley Research Center, Hampton, Virginia. The

report describes the development of Complementary Transistor-

Transistor Logic (CT2L) for use at high speeds (2 MHz), while

maintaining very low worst-case standby power (300 taW). Also

described is the development of three circuits and their fabrication

by the master bar approach. They are: 1) a single-6 input NAND

gate, 2) a dual-3 input NAND gate, and 3) a J-K Flip-Flop. Results
have shown that CT2L logic can be used as a high-speed logic at

micropower levels. The circuits operate at a 200 taW level at 50 kHz

and have worst-case standby powers of less than 300 taW. Operating

frequencies of over 2.0 MHz have been obtained at these power

levels. The NAND gates exhibit a power-speed product of 14

picojoules and the Flip-Flops have power-speed product of 9

picojoules. Two methods of obtaining complementary transistors in

integrated form are described. Both the NPN and PNP devices have

excellent matched low-current characteristics. These devices have

application in the linear field as well as the digital field. Further

reduction in power and increase in operating frequency is predicted

for improved isolation techniques.
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SECTIONI

INTRODUCTION

This final report on the developmentof "High-SpeedMicropowerMicroelectronicLogic
Circuits" documentstheeffort expendedandperformanceachievedundercontractNAS1-7106,for
theperiod1May 1968through16June1968.

The programrepresentsan extensionof micropowerresearchand developmentperformed
under contractNAS1-4350.In this contract,underthe guidanceof NASA,complementarylogic
wasselectedasthe bestapproachto achievinglow powerandhighperformance.Duringthecourse
of development,a new circuit approachto micropowerlogic envolved.Calledcomplementary
transistor-transistor-logic(CT2L), it madepossibleanorderof magnitudeimprovementin switching
speedsat micropowerlevels.

The objective of this program was twofold-simplification of fabricating complementary (PNP

and NPN) transistors on a single silicon bar, and fabrication of three types of circuits. These circuits

were: 1) a 6-input NAND gate, 2) a dual 3-input NAND gate, and 3) a J-K Flip-Flop. The circuits

had the design characteristics of: 1) "0" worst case standby power per gate (or flip-flop) of less than

300 taW, and 2) a maximum frequency of operation of greater than 2 MHz.
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SECTION II

TECHNICAL DISCUSSION-DESIGN AND EVALUATION

A. HISTORY

The concept of using complementary (PNP and NPN) transistors in logic circuits was advanced

by Baker, 1 for obtaining a maximum efficiency design. The features of a circuit that uses

complementary transistors at the output are:

1) Drive capabilities are excellent since the load is driven by a low-impedance source in

both directions

2) Essentially all the output current is available to drive the load

3) Both the high and low output voltages are clamped by the VCE(sat ) of the
transistors

4) Fast switching speeds are inherent at low power

5) There is low standby power; i.e., when there is NO LOAD, the power dissipated is

that of the base resistors

6) The tolerance on all resistors may be large

7) Circuit operation is substantially independent of transistor parameters

8) Circuit stability is insensitive to supply voltages

9) Circuit operates with only one power supply.

This new approach to high-speed, micropower logic, developed during the performance of

contract NAS1-4350, 2 combined the inherent low standby power of the complementary inverter

with the high speed of T2L-type input. This new logic (CT2L) achieves faster switching speeds and

repetition rates and shorter propagation delays at lower powers without sacrifice of other important

characteristics such as noise margin and operation over a wide temperature range. This is achieved in

a configuration which lends itself to fabrication in monolithic form.

B. COMPLEMENTARY SWITCH DESIGN

The basic complementary switch is inherently efficient. The input-output curve in Figure 1

describes the dc characteristics. Several important factors are noted in the following paragraphs.

3
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1. Low Transistor Base Current

At either the "1" or "0" input, the only current drawn under NO-LOAD condition is the base

current.

IB =[ VCC- VCE(Sat) - VBE]RB (1)

This current can be made arbitrarily low, limited only the the low-current hFE characteristics of the
transistors.

2. High-Speed Switching Transistors-Low Power Dissipation

During transition times, collector current flows through both PNP and NPN transistors and is

given by

VIN - VBEQ1 ] VCCIc = RB hFEQ1 , for VBE _<VIN _< --7-- (2)

Vcc- VBEQ2- VIN ]hFEQ2, VCC

!

IC= RB ] for 2
_<VIN_<Vcc - VBE (3)

For hFE Q 1 = hFEQ2, the maximum current occurs at VIN = (Vcc)/2

Therefore the PEAK current will be

IVcc/2 - VBE.]IpEAK = RB hFE
(4)

In order to minimize power, the transition period T must be as short as possible. Bypass or

"speed-up" capacitors C1 and C2 (Figure 1) must be used in parallel with the base resistors. The

power dissipated by the charging and discharging of these capacitors becomes a significant portion

of the total power at high frequency. When sufficiently large capacitors are used, the transition time

is determined by the ft of the transistors and parasitic capacitance.

3. Maximum Noise Immunity

The VIN versus VOU T curve shows that switching also occurs at VIN = (Vcc)/2 , giving
excellent noise immunity.

1he factors which influence minimum standby power then become: 1) low current hFE , and
2) resistor size. The factors that influence minimum power as a function of frequency are: 1)

transistor hfe , 2) ft' and 3) parasitic capacitance.
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C. CT2L CIRCUIT ANALYSIS

1. NAND Gate Analysis

a. General

The NAND gate circuit used (Figure 2) is basically the same as that employed in NASA

contract NAS 1-4350. The major circuit design problem was to optimize the circuit for operation of

2 MHz while maintaining less than 300-taW power dissipation in the logic "0" worst-case standby

condition.

The operation of the gate can be understood by referring to the schematic of the circuit in

Figure 2.

The AND positive logic function is performed by the action of the multi-emitter transistor Q3.

The NOT positive logic function is performed by the complementary output transistors Q 1 and Q2.

For the case in which any input is at a "0", base current flows through R1 from VCC supplying
base drive to Q3. This current turns Q3 on, supplying base current to Q 1 through R2 and CR 1. For

the case of all inputs at a logic "1", all gating emitters are reverse-biased and base current is supplied

to Q2 through Q4 and R4. The advantage of this circuit is that, in both cases, current is supplied

through an active device providing symmetrical drive conditions to Q 1 and Q2. This feature is the

primary reason that fast switching speeds at low power levels are attainable.

A B C D

$C02437A

R!

E F

EXPANDER

O

Q4 C3

CRI

1:11

R2

- I + LOGIC
)1 I A.B .C.D'E .F

CR2 C! dL_

C_2

GND

Figure 2. CT2L NAND Gate
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bo DC Analysis

Introduction. The worst-case dc conditions to be satisfied are:

Case 1) Q1 ON with "0" input at-26°C

Case 2) Q2 ON with "1" input at -25°C

Case 3) Q1 OFF with "1" input at 125°C

Case 4) Q2 OFF with "0" input at 125°C

The specification for loading is a fan-out of 5. The load current can be written as

ILOAD = [IR1 + IR2 ] [Fan-out]
(5)

ILOAD = __Vcc (1-+X V) - VCE(sat ) - VBE N_I

q

JR1 (1 -7 X R) M
+

Vcc (I+X V) -

2VCE(sat ) - 2VBE

R2 (1 -7 XR) M
t5} (6)

where the following terminology and values are defined as:

VCC = 2.7 V

VBE = 0.7 V

VCE(sat ) -- 0.1 V
Fan-out = 5

R1 =R2=R4--40k_2

XV = tolerance of voltage = 5%

X R = tolerance of resistor -- 10%

N = temperature coefficient of VBE
M = temperature coefficient of diffused resistors
R3 = R5 = 80 k_2

Using the appropriate values, the total dc load current can be written as:

ILOAD(max)
36. 103 M ] 36-103 M

ts}
(7)

At -25°C: N = 1.15, M = 0.9

ILOAD(max ) = 455 /aA (8)
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Case 1) Q1 ON with "O"at -25°C.

ILQl(max)

hFEQl(min ) = iBQl(min )
(9)

IBQ1 = IR2 - IR3 = [Vcc(

1+ XV)- 2VBE N- 2VCE(sat )

R2 (1 -V-XR) M
]

_ [ VBE N 1R3 (1 -T-XR) M
(10)

[2.365_1.4N]_[0.7_ ]IBQl(min) = 44. 103 M 72. 103 M
(11)

Under normal conditions, the dc drive requirement on the output transistor Q 1 with a "0" input is,

for all practical purposes, zero. Let us assume that the NAND gate will be required to drive a

symmetrical load, i.e., ILQ 1(max) = ILOAD(max).

Therefore
455 /aA

hFEQl(min) - 6.7 /aA - 68 at -25°C (12)

Since hFE(min ) will decrease from 25°C to -25°C, we determine the room temperature

hFEQ 1 as

hFEQl(min ) = 68 • 0.89
- 76 at 25°C (13)
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Case 2) Q2 ON with "1 "' input at -25°C

ILQ2(max)

hFEQ2(min) = |BQ2(min) (14)

.Vcc(1 +Xv)-IBQ 4 R1- 2VBE N]IBQ 2 = IR4 - IR5 = "_-_ +X_ ]_

VBE N ]
R5 (1 -Y-XR) M

(15)

Before proceeding, the term, "IBQ 4 RI" must be solved. The input resistance of Q4 may be
approximated by

RIN - hFE RL

- hFE(min ) R4

(16)

Let hFE at-25°C = 100; then

RIN = 100 • 40 • 103 = 4.0 • 106_ (17)

From which

VCC(1 +X V) - 2VBE N

IBQ4 = R1 + 4.0 • 106 (18)

= 0.32 • 10 -6 A

9
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and

IBQ4 R1 = 0.32 • 10-6 • 4.0 • 104 (19)

= 0.013 V

and

2.54- 1.4 N)_ tIBQ2(min) = 44 • 103 M
(20)

Let ILQ2(max)= ILOAD(max) = 455 /aA

then

455 taA

hFEQ2(min) - 11.1 #A
- 41 at-25°C (21)

Taking into account the hFE variation with temperature

1
m

hFE'2"min't_t ) = 41 0.72 57 at 25°C (22)

Case 3) Q1 OFF with "1" input at 125 ° C. For all inputs at "1", Q3 is off. When Q3 is off, Q 1

is held off by R3 to VCC. If the inputs "1" fall low enough to cause Q3 to conduct, Q1 is still held

off by the shift of CR1 and the dividing action of R2 and R3.

Case 4) Q2 OFF with "0" input at 125°C. For the case with one or more inputs at "0", Q3

conducts and Q2 is then held off by R5 to ground. If the input begins to rise, Q2 is held off by the

shift of CR2 and the dividing action of R4 and R5.

10
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C° Standby Power Calculation

Case 1) Clock at "1 ".

Pdcl = VCC ICC

4k ¸

Vcc(1 + X V)- 2VBE N- IBQ 4 R1 ]
= VCC (1 +X V) • R4 (1 +XR) M J (23)

The worst-case power considerations are at 25°C for this TCR; therefore

thus

M=N=I

r "1
/2.835 - 1.4 - 0.0131

Pdcl 218 3 5

L -- j36 - 103

= l12oW

2) Case 2) Clock at "0"

(24)

Pdc0 = VCC ICC

= VCC(1 +X V) If VCC(1 +XV)R1(1- VCE(sat)+X R) M- VBE N_]+

Vcc (1 + X V) - 2VCE(sat ) - 2VBE N ]lR2 (1 ; X R) M
(25)

f,
It

1[ 2.835 - 0.1 - 0.72.835
]36 • 103

+

.2.835 - 0.2 - 1.4)]36 • 103

= 254 ¢W (26)

11
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To this must be addedthe additionalpowerdrain for the worst-case condition of one emitter to

ground and the remaining input emitters to VCC.

For the 3 input NAND gate:

P/3I = VCC (2/3I IB)

= VCC (1 -+X V)

= 2.835

I2 (Vcc (1 _+X V) - N VBE- VCE(sat ) )]• 13I" R 1 (1 -+ X R) M

°'/],36
= 32.2 /aW (28)

therefore

Pdc0(Total) = 254 + 32.2 = 286.2 /aW (29)

The average standby power is

P(avg) =

Pdc0 + Pdcl 286.2 + 112

2 2
= 200 /aW (30)

d. Transition Analysis

Case 1) Transition of input from "I" to "0". As the driving transitor saturates and the input of

Q3 goes from a logic "1" to a logic "0", the base current for Q1 can be written as

ER(sat)Q2 + R(sat)Q 3 ] exp

(31)

12



ReportNo.03-68-31

Insertingthe properparametervaluesyieldsa time constantof _ 20 ns.Risetimesin this
rangehavebeenmeasured.

Case 2) Transition of inputs from "0" to "1 ". As the emitter of Q3 rises from the "0" state to

the "1" state, Q3 remains in an "on" condition until Vin _> 1 V. At this point Q4 is turned "on"
and provides base drive through C1 and C2. The delay time is determined by the effective

capacitance at the base of Q3 in conjunction with R 1.

This effective capacitance is composed of the following components:

a) The emitter-base capacitance of all inputs.

b) The collector-to-substrate capacitance of Q3.

c) Lead to substrate capacitance.

d) Junction capacitance of CR 1 and CR2.

e) C 1 and C2 reflected back through Q4.

f) Distributed capacitance of R 1.

Of the above, the second component is normally of the largest magnitude. A reduction of this

component through improved isolation techniques will greatly improve the performance of the
CT2L NAND gate.

e. Breadboard Results

The breadboard was built to simulate the actual integrated circuit. The resistors and capacitors

were diffused components in TO-5 cans and the active devices were basically the same as those

devices which were to be built in integrated form under this contract.

The breadboard power-versus-frequency results are shown in Figure 3. The plot of propogation

delay versus power, shown in Figure 4, was attained by varying VCC from 2.0 V to 6.0 V. The

voltage transfer curves are plotted in Figure 5. Later sections of this report show that the actual

integrated circuit performance is very similar to the breadboarded circuit.

The complementary inverter section of the CT2L NAND gate is a relatively high-speed and

low-power device. The limiting performance factor is the turn-off time of the multi-emitter AND

gate section. The original circuit was breadboarded with discrete passive devices (carbon resistor,

mylar capacitor) and with a minimum of stray capacitance. The complementary transistors were the

same as previously used, but the multi-emitter transistor Q3 was replaced by the same type

transistor as the output NPN transistor. The resulting power-speed curve is shown in Figure 6. This

plot illustrates the increased performance obtained for the case of reduced stray capacitance and a

higher ft transistor on the input.

13
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2. Flip-Flop Analysis

a. General

The J-K Flip-Flop circuit used (Figure 7) is basically the same as that employed in NASA

contract NAS 1-4350. The major circuit design problem was to optimize the circuit for operation at

2-MHz clock frequency while maintaining less than 300-/aW, power dissipation in the logic "0"

worst-case standby condition.

The operation of the J-K Flip-Flop can be described by referring to the schematic of the

circuit in Figure 7.

The basic bistable element is composed of two pairs of complementary transistors-Q 1 and Q3;

Q2 and Q4. In the stable state one, Q 1 and Q4 are conducting while Q2 and Q3 are turned off. For

stable state two, Q2 and Q3 are conducting while Q1 and Q4 are off. For stable state one, base

current is supplied to Q4 through the resistor R3 and Q 1 through resistor R2. For stable state two,

base current is supplied to Q3 through R4 and to Q2 through R 1.

The trigger (transistion action) is now considered. For this description, consider the circuit as a

counter. (J-K inputs floating or to VCC).

Assume the bistable element is in stable state one. In this state, trigger capacitor C l has very

nearly zero volts across it and is at a potential near VCC. Also note that Q is at VCC and

consequently the top of R7 is at VCC, charging C5 to VCC - VBE. This charge on C5 will deliver
base current to Q7 during the transition. Note also that Q is at ground thereby inhibiting the J gate

and holding the voltage on C6 to near 0 potential. The following sequence of regeneration occurs

during the negative going transition of the clock.

1) As the clock input goes down, the emitter-base junction of Q7 is forward biased

turning it on. This places the junction of R5 and C 1 near ground potential.

2) Base current flows through Q2, C 1 and Q7 turning on Q2.

3) The collector of Q2 rises to Vcc coupling a regenerative pulse through R4 and C4 to
Q3 and through R2, R6 and C2 to Q 1, turning off Q 1.

4) With Q3 on and Q1 off, Q goes to zero volts, coupling regenerative pulses to Q4

through R3 and C3, turning Q4 off and through R 1, R5 and C 1 to Q2 holding Q2

on.

5) Regeneration is now complete and the circuit is in stable state two.

During the time when the clock is at zero volts, the J-K inputs are held at "0" level, thereby holding

Q7 and Q8 off. Resistors R9 and R10 introduce a slight time delay, allowing the charge on C5 to

discharge primarily through Q7 during the negative transition.

Continuing the sequence, when the clock input goes positive, a positive-going pulse is coupled

through C 10 to the base of Q 10, turning Q 10 on and allowing a rapid charge of C6. The bistable

element is now set to start another cycle.
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Straightforward ac and dc set and reset functions are provided which turn on Q 1 or Q2 with a

negative-going pulse at any of the above inputs.

b. DC Analysis

Assume that the worst-case loading is at -2,5°C for a fan-out of five NAND gates. From

calculations performed, we know that a fan-out of five flip-flops requires considerably less power

than the five NAND gates. We also note from Figure 7 that the hFE equation for Q 1, Q2, Q3, and

Q4 is the same.

ILOAD(max) (32)

hFE(min ) = iB(min )

From Equation (8), the maximum load current ILOAD(max ) = 455/aA

VCC (1 +- X V) - VBE N - VCE(sat )
(33)

IB(rain) = R B (1 -+ X R) M

where the same terminology as before holds and R B = 90 k_2.

IB(min) =

2.46 - 0.7 N

99.103 M

At - 25°C

455
- 24.6 (34)

hFE(min) - 18.5

and at 25°C

1

hF'_'"_TP_Iztrlx) = 24.6 • 0.89 27.9 (35)

hFE(NPN ) = 24.6 •

1
- 34.6 (36)

0.72
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C° Standby Power Calculation

Case 1) Clock at "1 ".

Pdcl = VCC ICC

= VCC(1 +X V) • 2 I.Vcc (1 +-X V) - NVBE - VCE(sat ) /

"1

(37)

JR B (1 7; XR ) M

2.735 - 0.7 N.IPdcl = 5.67L _l : ]0 _ _VI

Due to the temperature coefficient of the diffused resistors, the theoretical worst-case occurs at

approximately 25°C (n=M = 1). This does not include increased leakage at higher temperatures.

Pdcl = 143 /aW (38)

To this value must be added the power dissipation P/3I due to the effect of emitter-to-emitter
beta worst-case for the multi-emitter transistors Q5 and Q6. This power is given by

P/3I = VCC (4/3I IB)

= VCC(1 +-X V).I

4/31 [Vcc (1 + X V) - N VBE- 2VCE(sat)]

R B (1 _ X R) M

(39)

= 272 131 /aW
(40)

where/31 is the emitter-to-emitter current gain. From data taken on multi-emitter transistors with an

external base resistor of 3 k_2 the worst-case value of _I is expected to be 0.1. Therefore, P_I = 27.2

taW. Total standby power in the "1" state is then the sum of Pdc 1 and P_I, or 170.2 taW.
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Case 2) Clock at "0".

Pdc0 = Pdcl + VCC (1 -+XV) Vcc
(1 _+X V) - 2VCE(sat ) - VBE N |

-I

R7- 8 (1 T-XR) M J(41)

2.635 - 0.7 N.]+

At 25°C, N = M = 1 so that

Pdc0 = 170.2 + 67.7 = 237.9 _tW (42)

Average standby power P(avg) is given by

Pdcl + Pdc0

P(avg) = 2

170.2 + 237.9
= 204.1 #W (43)

d. Breadboard Results

The Flip-Flop breadboard was constructed in a manner similar to the NAND gate construction.

The breadboard results of Figure 8 indicate that there would be difficulty in obtaining 2 MHz if less

than 300 uW standby were to be maintained. This is basically because we are operating one and

one-half NAND gates at the same power level as one of the single-6 gates. By decreasing the gating

transistor's base resistor, R7_ 8, to 40 k_2, the frequency can be obtained but at a sacrifice in
standby power. A plot of power versus frequency for this condition is shown in Figure 9.

D. DIFFUSION TECHNOLOGY

1. Introduction

Since the completion of NASA Contract NAS1-4350, complementary transistor development

has continued at Texas Instruments. The present process used to fabricate complementary

transistors uses a buried-layer material. The buried-layer approach has an advantage over the

previous methods of fabricating complementary transistors, in allowing for a reduction in the

number of diffusion and photolithographic processing steps. This process will be designated

"Schedule A" in this report.
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Figure 8. Power versus Frequency, R 7_ 8' = 82.5 k_2
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Figure 9. Power versus Frequency, R 7_ 8 = 40 k_2
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Thegoalof anyprocessis to achievethedesiredresultswithnumberof processsteps.For best
performancefrom the NPNand PNPtransistors,independentdiffusionsshouldbeusedfor each
transistor.With thesegoalstheminimumnumberof processsteps(actualdiffusions)wouldbethree
for PNP(triple-diffused)andtwo for theNPN(epitaxialcollector).Theaboveprocesshasachieved
theminimumprocessingstepsandyieldstruly complementarytransistors.

To eliminatesomeof theproblemsencounteredin fabricationof ScheduleA material,anew
approachhasbeendevelopedthat usesa doubleburiedlayer.Thenewapproachwasdevelopedto
maintaina moreconsistentPNPbasediffusion.Thisdoubleburied-layerprocesswill bedesignated
"ScheduleB" in thisreport.A furtherdiscussionof bothprocesseswill follow.

2. Buried-Layer Approach-Schedule A Process

The Schedule A approach for fabrication of complementary transistors is presented in Figure

10. The novelty of this process is in its use of the "buried layer" as a diffusion stop rather than its

more conventional function of reducing collector series resistance. This allows for the formation of

the PNP collector and the P-N junction isolation with the same diffusion. Impurity profiles for the

NPN and PNP transistors of this structure are presented in Figs. 11 and 12.

Complementary transistors fabricated with this process exhibit excellent characteristics over a

wide range of operating currents. Figure 13 shows the curve tracer results of a typical

complementary pair of transistors using Schedule A. Some characteristic data on a typical unit are

given in Figure 14 (hFE versus IE) and in Figure 15 (ft versus IE).

3. The Double-Buried Layer Approach-Schedule B Process

It should be made clear that the effort to develop a new process is not due to the quality of

the transistor fabricated with the Schedule A approach. There have been at times noticeable

inconsistancies with the fabrication of the PNP device in obtaining a uniform distribution of hFE.

The purpose of Schedule B was to match the performance of Schcdule A devices while obtaining a

more uniform distribution of current gain.

The background concentration (epitaxial layer) of Schedule A material is determined by the

Rsa t limit on the NPN transistor. The relatively high concentration of the epitaxial layer (0.2 _-cm)
causes less than an order of magnitude difference between the collector and base region of the PNP

transistor. Non-uniformity of the base region concentration has been a noticeable problem in

fabrication of the PNP transistor.

The epitaxial thickness is dictated by the Rsa t limit of the PNP transistor. An epitaxial layer of

10 tam is needed to assure obtaining a PNP collector junction of 8.5 tam. This relatively thick

epitaxial layer renders useless the "buried-layer" region under the NPN transistor.

To eliminate some of the problems of the previous structure, a new approach has been

developed which uses a double "buried-layer" material. The starting material is a standard

"buried-layer" slice before the epitaxial layer has been grown. A standard P+-type (boron)
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Figure 10. All-Diffused PN Junction Isolated Buried-Layer-Schedule A Process
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Figure 13. Complementary Transistor Pair-Schedule A Process 
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Figure 14. hFE versus IE-Schedule A Process

deposition and diffusion will be performed into the region of the "buried layer" where the PNP

collector will be formed, and also into the region where the P-N junction isolation will be formed.

The slices then receive the required epitaxial layer. Slices are next placed in a furnace until the

P-type impurity reaches the epitaxial surface. This results in a retrograded P-type collector and P-N

junction isolation.

The remainder of the process is similar to the previously mentioned process. The

cross-sectional view is seen in Figure 16. The resulting profile for the PNP transistor is

approximately that of Figure 17. The profile of the NPN is basically the same as that of Figure I 1,

with the exception that the buried N + layer is closer to the collector-base junction.

This process was initiated to produce a more consistent base (PNP) diffusion, resulting in

better yields. The lower concentration of the PNP collector near the surface allows higher BVcE O

for the same hFE and reduced collector-base capacitance. This collector profile acts in much the
same way as a "buried-layer" structure. Concentration at the surface is low, and the concentration

below the surface is progressively higher. Since this reduces the need for the relatively deep

collector junction, the epitaxial layer can be reduced (_ 5 tam). This leaves the "buried-layer"

region under the NPN closer to the active region of the NPN device and thus reduces the VCE(sat )
of this device.

Figure 18 shows the curve tracer results of a typical complementary pair of transistors using

Schedule B. Some characteristic data on a typical unit are given in Figure 19 (hFE versus IE), and in

Figure 20 (ft versus IE).
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Figure 15. ft versus IE-Schedule A Process

Although a limited effort has been made in developing this process, we feel that it has some

definite advantages, primarily in the ease of fabrication.

4. Schedule Comparison

The NPN transistor should be basically the same for both schedules, because the same profile is

used. The VCE(sat ) of Schedule B's NPN transistor is somewhat lower because the buried layer has
been moved closer to the collector-base junction.

The PNP devices fabricated on both schedules had basically the same properties. It was noticed

that the ft of the Schedule B material was somewhat lower and this was possibly due to the
retrograded collector.
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Figure 16. All-Diffused PN Junction Isolated Double Buried Layer-Schedule B Process
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Figure 17. Double Buried-Layer PNP Transistor Impurity Profile

The main purpose of the two schedules was to produce a more consistent PNP device and thus

increase yield. Not enough B material was processed to allow a direct statement to this effect, but

of those slices tested, the hFE had less variation across the slice using the Schedule B approach than
with the Schedule A material.

The two approaches require the same amount of processing steps and differ only as to when

they are performed in the schedule. Schedule B does require that when the material is etched before

the epitaxial layer is applied, a set amount of the parent material be removed. This step could result

in a potential problem area and cause inconsistency.
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E. BARDESIGN

1. Device Geometry

The transistor geometry used in this contract was common for all transistors except the

multi-emitter input transistor. The geometry shown in Figure 21 is basically a 0.7 X 0.7 rail 2

emitter with a single base contact and collector guard ring.

The geometry used for the multi-emitter input transistor, shown in Figure 22, is basically a 0.4

X 0.4 mil 2 emitter with a base resistor and collector guard ring. The base resistor is used to reduce

emitter-to-emitter current gain.

Resistor geometry is shown in Figure 23. The resistor is 0.3-rail wide and has a nominal sheet

resistance (R s) of 550 _2/[J. It is fabricated using the diffusion for the NPN base. The temperature
coefficient for the diffused resistor (TCR) is given in Figure 24. The proper TCR is a very important

parameter in micropower complementary logic circuits. The choice of a proper coefficient will

compensate for hFE variation with temperature [See Equation (1)] and allow for worst-case power
to occur at 25°C.

EMITTER

BASE -_11

I

PNP COLLECTOR

CA16730

I -1 F

.

-4_ F 0.2 MIL

LAYER

,--_- BUR I ED

I
I
I
I
I
1 2

EMITTER: 0o7 X 0°7 MIL

EMITTER CONTACT: 0,3 X 0.3 MIL

BASE: I .9 X 1 .3 MIL
2

BASE CONTACT; 0,3 X 0.7 MIL
2

COLLECTOR: 3.7 X 3. | MIL
2

BURIED LAYER: 4.7 X 4. I MIL

Figure 21. Output Transistor Geometry
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The capacitor geometry is shown in Figure 25. The capacitor is fabricated using the N +

buried-layer and NPN emitter diffusion connected in parallel to form the N region. The P region is

the PNP collector diffusion. The capacitance-versus-voltage plot is given in Figure 26. Capacitor

designations refer to Figure 7.

2. Master Bar Approach

The three required circuits, single-6 input NAND gate, dual-3 input NAND gate, and J-K

Flip-Flop, were fabricated using the master bar approach. That is, all circuits had a common bar

N--EP I

P CONTACT

EM ITTER

N CONTACT

(a) TOP VIEW

i
A'

N N+

PNP COLLECTOR

l N BURIED LAYER

P SUBSTRATE

CA|6734 (b) CROSS SECTION A--A _

Figure 25. Diffused Capacitor Geometry
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0 1.0 2.0 3.0 4.0 5.0 6.0

BIAS (V)

CA 16665

i

Figure 26. Capacitor Voltage Characteristic

layout, with circuit configuration determined by the metallization pattern. The master-bar layout is

shown in Figure 27. Metallization patterns are:

1) Single-6 NAND gate-Figure 28.

2) Dual-3 NAND gate-Figure 30.

3) J-K Flip-Flop-Figure 32.

Photographs of completed circuits are shown as Figures 29, 31, and 33.
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Figure 3 1. Photograph of Dual-3 NAND Gate 
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Figure 33 .  Photograph of  J-K Flip-Flop 
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The completedcircuitsweremountedand bondedin a 14-leadflat package.The bonding
diagramsare:

1)

2)

3)

Single-6 NAND gate-Figure 34.

Dual-3 NAND gate-Figure 35.

J-K Flip-Flop-Figure 36.

F. CIRCUIT CHARACTERIZATION

1. Introduction

The purpose of this section is to present the typical characteristics of the circuits fabricated

under this contract. Eighteen separate tests were used for the NAND gates and 12 tests for the

Flip-Flops. This large number of tests is necessary to describe the circuits completely. Because of

the large number only a few circuits of each type were selected for testing. In this selection an

effort was made to choose a representative sample. For example, one of the NAND gates tested had

relatively low hFE output transistors. Some of the circuits fabricated on the contract had higher
operating frequencies while others were lower standby-power units. Therefore, the data plots

presented here can be taken as average operating characteristics.

The basic characterization "setup" for the circuits is shown in Figure 37. The drive gate was a

breadboard using discrete devices. The capacitance at the output due to the test setup at NO LOAD

was approximately 15 pF.

Circuits were fabricated using both Schedule A and Schedule B processes. The major emphasis

here will be placed on Schedule A performance with the more important parameters being shown

for Schedule B later in this section.

2. NAND Gate Characterization-Schedule A Process

NAND gate characterization on the single-6 input NAND gate will be presented since it will

indicate "worst-case" power. The dual-3 NAND gate should have identical input and output

characteristics. In general the dual-3 circuits tested have characteristically lower Fma x and lower

worst-case standby power. The slower speeds are due in a large part to the required expander input.

The method of specifying transient performance of the NAND gates will be to quote the delay,
rise, and fall times. 3

Propagation delay time (tp) is defined as the average of the delays for both the leading and
trailing edges of the input voltage pulse. Using the waveforms of Figure 38, the following definitions

will apply: The leading-edge delay (td0) is the time difference between that time when the input
pulse reaches 50 percent of its final value and the time when the output of the gate has fallen to its

50 percent point. Similarly, the trailing-edge delay (tdl) is defined as the time between the 50
percent points, with the input-pulse trailing edge as reference. The propagation delay is then the

average of td0 and tdl, that is tp = (td0 + tdl)/2.
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Risetime (t r) refersto the time it takesthe output voltageto rise from 10to the90percent
points.Fall time(tf) isdefinedin asimilarmanner,asindicatedin thesamefigure.

The datafrom two circuitswill bepresentedhere.The first gate(MS-4)wasfabricatedin lot
MF-ABandis typical of theNAND gatesfabricatedduringthiscontract.Thesecondgate(MS-71)
wasfabricatedin lot MF-AG,whichhadlowhFEon theoutput transistors.Themajoreffectof the
low hFE will bein transientperformanceandin noiseimmunity.

Titles of figuresshowingperformancefor both gatesarelistedherefor convenientreference
andfollowedby commentson theperformance.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
,Figure
Figure
Figure
Figure
Figure
Figure

39-StandbyPowerversusVCC(MS-4)
40-StandbyPowerversusVCC(MS-71)
41-FrequencyversusPower(MS-4)
42-FrequencyversusPower(MS-71)
43-PowerversusTemperature(MS-4)
44-PowerversusTemperature(MS-71)
45-SwitchingWaveforms-tdO,Gate(MS-4)
46-SwitchingWaveforms-tdl,Gate(MS-4)
47-SwitchingWaveform-td0,Gate(MS-71)
48-SwitchingWaveform-td1'Gate(MS-71)
49-PropagationDelayversusPower(MS-4,MS-71)
50-SwitchingTimesversusTemperature(MS-4)
51-SwitchingTimesversusTemperature(MS-71)
52-Fmax versusPower(MS-4,MS-71)
53-Fmax versusCLOAD(MS-4,MS-71)
54-Vou T versusVIN (MS-4)
55-Vou T versusVIN (MS-71)
56-Worst-CaseVOUTversusVIN (MS-4)
57-Worst-CaseVOUTversusVIN (MS-71)
58-Vou T versusISOURCE(MS-4)
59-Vou T versusISOURCE(MS-71)
60-Vou T versusISINK(MS-4)
61-Vou T versusISINK(MS-71)
62-VIN versusIIN (MS-4)
63-VIN versusIIN (MS-71)
64-AC Noise(MS-4,MS-71)
65-TriggerLevelversusTemperature(MS-4)
66-TriggerLevelversusTemperature(MS-71)
67-PropagationDelayversusEmittersto VCC(MS-4,MS-71)
68-CurrentDueto EmittersatVCC(MS-4)
69-Current Dueto Emittersat VCC(MS-71)
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Figure 45. Switching Waveforms - tdo, Gate (MS-4) 
(Sheet 1 of 3)  
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Figure 45. Switching Waveforms - td0, Gate (MS-4) 
(Sheet 2 of 3) 
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Figure 46. Switching Waveforms - td 1, Gate (MS-4) 
(Sheet 1 of 3) 
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Figure 52. Fma x versus Power (MS-4, MS-71)

These tests were conducted using the NAND gate as an inverter. One emitter of the input

transistor was used as the input; the other 5 emitters were tied to VCC. This condition will give
worst-case power due to emitter-to-emitter current gain.

The data presented in Figures 39 through 69 is self-explanatory, but a few comments will be

made to point out special features. The standby power plots of Figures 39 and 40 were made by

varying VCC from 2.0 V to 5.0 V. The "0" standby power was within the 300/aW specification at

2.7 V. Since these circuits are relatively independent of VCC, they are capable of operating over a

large supply voltage range. This makes them compatible with standard digital circuits, for

example-Texas Instruments Series 54L.

The frequency plots of Figures 41 and 42 show that under some conditions the 2-MHz

operating frequency was not met. The basic problem here is not in the complementary inverter

section but in the T2L input. The circuit speed is really dictated by the amount of parasitic

capacitance associated with the multi-emitter input transistor (Q3 of Figure 2) and the ft of this
device. With dielectric isolation, for example, it would be theorized that 10-MHz operation at these

power levels could be obtained (see Figure 6.) Even though the circuits' maximum operating

frequency was somewhat low compared to the 2 MHz contract specification, these circuits had

twice the operating frequency of the circuit fabricated during Contract NAS 1-4350.

The unique effect that the TCR of the diffused resistor has is shown in Figures 43 and 44. The

worst-case power is approximately 25°C for low frequencies. At higher frequencies, the power due

to switching transients is predominant.

81



ReportNo.03-68-31

tD

N

>
O

I_ O

d N

II II

> Ul

I-

N

N

O

(Xl

I

I I I I I I I

• • • • • e

XW_

0

tO

0
_0

0
0

0
-- N

0_

O

O

O

<
0
J

0

82



ReportNo. 03-68-31

3.0

2.5

>

_ 1.5
O

>

NO LOAD

CA 16968

-250C, Vcc =2.56 V

Vcc =2.7 V

125°C, Vcc =2.84 V

v (v)
IN

Figure 54. VOU T versus VIN (MS-4)

Switching waveforms of Figures 45 through 48 completely describe the gates' switching

performance. The major portion of propagation delay is contributed by td0. Notice that gate MS-71

has longer fall times due to the low hFE of the output transistors.

The speed-power plot of Figure 49 was obtained by varying VCC from 2 to 5 V. The

power-speed product at 2.7 V is approximately 14 picojoules for both gates. The test frequency was

50 KHz.

Switching times over the temperature range are shown in Figures 50 and 51. The curves are

plotted for capacitance loads of 15, 65 and 165 pF.
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Figure 55. VOU T versus VIN (MS-71)

The maximum operating frequency (Fma x) plot of Figure 52 was obtained by varying VCC

from 2.0 to 6.0 V. The power is the power at Fma x. The effect of load capacitance is shown in

Figure 53.

Voltage transfer curves of Figures 54 and 55 were taken at NO LOAD condition. The

worst-case plots of Figures 56 and 57 were obtained by varying the worst-case voltage, temperature,

and loading conditions required by the contract. The data given on the plots were calculated using

the method explained by Lynn et al. 3 The following definitions apply:

V£-logic swing

NM0-noise margin for a logical "0" input
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Figure 56. Worst-Case VOU T versus VIN (MS-4)

NM 1-noise margin for a logical "l" input

NS0-noise sensitivity for a logical "0" input

NS l_noise sensitivity for a logical "1" input

NI-ratio of noise sensitivity to logic swing (NS/V£).

In Figure 57, the low hFE of the output transistors causes a wide transition width. These plots also
point out one of the salient features of complementary output digital logic, Both the "1" and "0"

operating levels are clamped at VCC - VCE(sat ) and VCE(sat ) of the transistors. The nominal value

for both the PNP and NPN transistor of VCE(sat ) is less than 0.1 V.
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Figure 57. Worst-Case VOU T versus VIN (MS-71)

Plots of Figures 58 through 61 show that the output impedance in both the "1" and "0"

operating levels is the R(sat ) of the PNP and NPN transistor until the transistors are pulled out of
saturation. The output impedance is less than 200 _2 while the transistors are in saturation.

Input impedance can be obtained from Figures 62 and 63. The input impedance is

approximately 25 k_2. Also, the value predicted by Equation (6) for a fan-out of 5 is 455 taA while

the curve gives approximately 400 taA at - 25°C.

The ac noise plot of Figure 64 points out another feature of the complementary output; that

is, any ac noise will be suppressed since the output will always be an ON transistor.
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Figure 58. VoUTversus ISOURCE (MS-4)

The trigger level plots of Figures 65 and 66 were taken with the following definitions:

"0" Trigger Level-when every portion of the output waveform is within 0.2 V of the
final value.

"1" Trigger Level-when any portion of the output waveform goes above 0.2 V of the
initial value.

Figure 67 shows the adverse effect that the 5 unused emitters to VCC have on propagation
delay. These emitters add capacitance that the input transistor must charge and discharge.

When the unused 5 emitters of the gating transistor are returned to VCC and the input is at

ground, then there is a wasted current flowing equal to 5/31 IBQ3, where/31 is the emitter-to-emitter
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Figure 59. VOU T versus ISOURCE (MS-71)

gain of the gating transistor Q3. This current is not detrimental to circuit operation but it is a

significant portion of the "0" standby power. From Figures 68 and 69, it is seen that this current is

greater than 10% of the specified 300 t_W.

3. Flip-Flop Characterization-Schedule A Process

A series of 12 tests were used to characterize the Flip-Flop circuit. In all tests except the last

two, the Flip-Flop was operated as a counter. In the counter configuration, the J and K inputs as

well as the dc Set and Reset inputs were returned to VCC, the worst-case power consideration.

The method of specifying transient performance of the Flip-Flop will be to quote the delay,

rise and fall times.
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Figure 60. VOU T versus ISINK (MS-4)

The propagation delay time (tp) is defined as the average of the delays for both the leading and
trailing edges of the output wavef6rm. This Flip-Flop changes states on the negative going portion

of the clock; therefore, the delay times will be referenced from the trailing edges of the input

voltage pulse. Using the waveforms of Figure 70, the following definitions apply: The delay time

tpd 0 is the time difference between that time when the input pulse reaches 50 percent down from
its initial value (trailing edge) and the time when the output has fallen to its 50 percent point.

Similarly, the delay time, t_dl, is the time between the 50 percent points as the output goes high.
The propagation delay is de_ned as the average of the two delays, i.e.,

tpd 0 + tpd 1

tp = 2

The rise and fall times are defined in the same manner as in paragraph IIF2.
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Figure 61. VOU T versus ISINK (MS-71)

The data for two circuits will be present. The first Flip-Flop (MF-92) was fabricated in lot

MF-AJ. The second Flip-Flop (MF-156) was fabricated in lot MF-AP. Both circuits are typical of

the Flip-Flops fabricated on this contract. Titles of figures showing Flip-Flop performance are listed

here for convenient reference and followed by comments on the performance.

Figure 71-Standby Power versus VCC (MF-92)

Figure 72-Standby Power versus VCC (MF-156)
Figure 73-Frequency versus Power (MF-92)

Figure 74-Frequency versus Power (MF-156)

Figure 75-Power versus Temperature (MF-92)

Figure 76-Power versus Temperature (MF-156)

Figure 77-Switching Waveform, tpd 0 (MF-92)
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Figure 62. VIN versus IIN (MS-4)

78-Switching Waveform, tpd 1 (MF-92)

79-Switching Waveform, tpd 0 (MF- 156)

80-Switching Waveform, tpd 1 (MF- 156)
81-Propagation Delay versus Power (MF-92, MF-156)

82-Fma x versus Power (MF-92, MF-56)

83-Fma x versus CLOAD (MF-92, 156)

84-Vou T versus ISOURCE (MF-92)

85-Vou T versus ISOURCE (MF- 156)

86-Vou T versus ISINK (MF-92)

87-Vou T versus ISINK (MF-156)
88-Trigger Sensitivity (MF-92)

89-Trigger Sensitivity (MF-156)
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Figure 90-DC Set and Reset (MF-92)

Figure 91-DC Set and Reset (MF-156)

The tests were conducted using the Flip-Flop as a counter. The clock input was driven by the

same drive gate used in the NAND gate test. The counter will give worst-case power conditions.

A few comments will again be made on the data presented. The standby power plots of Figures

71 and 72 show that the circuits are within the 300 /zW specification. Maximum frequency for

Flip-Flop operation is reduced from that of the NAND gate circuits to obtain the 300-/aW

specification. The Flip-Flop can be thought of as consisting of two ON inverters and one ON AND

section in either state. To remain under 300/_W, the power of the AND section was reduced, thus

reducing the upper operating frequency. Figures 73 and 74 show that the 2 MHz Fma x specification
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was not met, but 1 MHz was realized under all conditions. This again shows a 100% increase over

the circuits fabricated during contract NAS 1-4350.

The switching waveforms of Figures 77 through 80 completely describe the circuit transient

response. Conditions shown are for NO LOAD, 5 Flip-Flops and 5 NAND gates. All VCC voltages
"are 2.7 V. Both delay times are approximately equal. Notice that the propagation delay varies little

with increased power (Figure 81).

The maximum operating frequency (Fma x) plot of Figure 82 was obtained by varying VCC

from 2.0 to 6.0 V. The power is the power at Fma x. The effect of load capacitance is shown in
Figure 83.

Output characteristics (Vou T versus ISOURCE and ISINK) are shown in Figures 84 through

87. Notice that the PNP transistor of MF-92 (see Figure 84) has a somewhat lower hFE than does
the same transistor of unit MF-156 (see Figure 85). The 500 pA was achieved under all conditions.

Again the output impedance was the Rsa t of the transistors until the devices were pulled out of
saturation.

Trigger sensitivity for the Flip-Flops is shown in Figures 88 and 89. They are plotted over a

wide range of trigger fall times.
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Figures 90 and 9 t are the resulting waveforms of an input at the dc Set and Reset terminals.

The delay times will be defined in a manner similar as to when the input is at the clock (see Figure

70). The delay times are tabulated for the conditions listed in Table I.

The J-K input characteristics were determined by using the following test sequence:

1) 50 kHz on clock input.

2) Set K to VCC, J to ground.

3) Set K to ground, J remains at ground-Q should be at a "0".

4) Hold K to ground, increase voltage to J and observe voltage at which Q goes to a

"1". This will be called the J level.

5) Increase voltage at J until it reaches VCC.

6) Increase voltage at K until circuit acts as a counter. This will be called the K level.

The results of these tests, along with the conditions are listed in Table II.

4. Schedule B Process Circuits

As pointed out earlier in this section, circuits would be fabricated using both Schedule A and

Schedule B processes. The major effort was directed toward Schedule A, but a few circuits using
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Table I. DC Set and Reset Switching Times

Device Temperature

No. (%)

92 -25

92 25

92 125

156 - 25

156 25

156 125

tpdl tpdO VCC
(ns) (ns) (V)

80 133 2.7

65 117 2.7

63 120 2.7

57 123 2.7

52 117 2.7

55 125 2.7

Table II. J-K Input Characteristics

Device

No,

92

92

92

156

156

156

Temperature VCC J level K level
(°C) (V) (V) (V)

-25 2.56 0.75

25 2.7 0.6

125 2.84 0.35

-25 2.56 0.8

25 2.7 0.65

125 2.84 0.4

0.85

0.7

0.45

0.9

0.7

0.4
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Figure 70. Definition of Switching Times (Flip-Flop)

Schedule B were made. No mask changes were required; only a materials schedule manipulation was

needed. A limited amount of circuit data was taken for Schedule B since the only change was in the

PNP devices. The purpose of Schedule B was not to increase circuit performance, but to obtain a

more consistent PNP device. Figures 92 and 93 are frequency-versus-power plots along with "0" and

"1" standby power for the NAND gates and Flip-Flops respectively. This data was taken at NO

LOAD, VCC = 2.7 V and 25°C temperature. The switching waveforms for the same condition are
shown in Figures 94.and 95. Very little difference in overall characteristics was noticed between the

two schedules. Little difference was expected. The objective was to simplify the fabrication process.
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SECTION III

CONCLUSIONS

All major design and performance criteria for this program were met except maximum

frequency of operation for the J-K Flip-Flop. Even though this specification was not met, the

results represented a 100% improvement over circuits fabricated during contract NAS 1-4350, while

at the same time, circuit power was reduced approximately 50 taW. The performance is summarized

in Table III.

NO.

Table III. CT2L Circuit Performance (NAS 1-7106)

Item NAND Gate Flip-Flop

1. Voltage

a. Nominal Value

b. Tolerance

c. Maximum VCC Without Damage

2. Power Drain

a. "0" Worst-case Standby

b. 50 kHz

3. Rise Time

4. Fall Time

5. Propagation Delay

6. Power-Speed Product

7. Fan-out

8. Fan-in

9. Maximum Frequency

10. DC Set or Reset Times

2.7 V

+ 5%

6.0 V

300 _W

200/_W

20 ns

50 ns

70 ns

14 pJ

5

6

2.5 MHz

2.7 V

+ 5%

6.0 V

300/_W

200 _W

20 ns

50 ns

20 ns

4 pJ

5

2-unit load

1.5 MHz

100 ns

Fabrication of high-quality micropower PNP and NPN transistors on a common substrate was

demonstrated. These transistors were fabricated by a simplified process with no decrease in

performance. These devices will have application in the linear monolithic area as well as in the

digital.

Complementary Transistor-Transistor Logic (CT2L) was shown to be adaptable to high-speed

operation (2 MHz) at low power as well as an excellent standby power logic (300 taW). A

power-speed product of 15 pJ was obtained for the NAND gates.
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Furtherreductionin powerandincreasein switchingspeedsis possiblewith improvementin
isolationtechniques.

Thecomplementarytransistor fabrication and complementary logic techniques demonstrated

here can be used to develop a 1.0-V logic system.
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APPENDIX

NOTES CONCERNING OPERATION OF FLIP-FLOP

A. OPERATION AS A COUNTER

1) Connect VCC , ground and clock per Figure 36. Clock should not exceed VCC.

2) Output is taken from Q or Q.

3) No other connections are necessary; however it is recommended that dc set and reset

be returned to VCC when not used.

B. OPERATION AS A SHIFT REGISTER

1) Connections same as in A.

2) Output Q 1 of stage 1 goes to K 1 (or K 2) of stage 2 and so on.

3) Output Q 1 of stage 1 goes to J 1 (or J2 ) of stage 2 and so on.

4) The following logic tables apply.

Tables A-I and A-II describe the individual gate functions.

Table A-I

Logic

J1 J2 JIJ2

0 0 0

0 1 0

1 0 0

1 1 1

Table A-II

Logic

K 1 K 2 KIK 2

0 0 0

0 1 0

1 0 0

1 1 1

A-1
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Table A-Ill describes the operation when only one set of J-K inputs is used.

Table A-III

t n tn+ 1

J K Q

0 0 O n

0 1 0

1 0 1

1 1 Q
n

Table A-IV describes the operation when both sets of J-K inputs are used.

r_

Table A-IV

t n tn+ 1

J1 J2 K1 K2 Q

0 0 0 0 Qn

0 0 0 1 Qn

0 0 1 0 Qn

0 0 1 1 0

0 1 0 0 Qn

0 1 0 1 Qn

0 1 1 0 Q
n

0 1 1 1 0

1 0 0 0 Q
n

1 0 0 1 Q
n

1 0 1 0 Q
n

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 Q
n

Co DC SET AND RESET

1) DC set and reset is accomplished by a "0" input at the dc set and reset inputs.

2) When not in use it is recommended that de set and reset functions be returned to

VCC.

A-2


